Ivosidenib (AG-120) in mutant IDH1 relapsed/refractory acute myeloid leukemia: Results of a phase 1 study

Courtney D DiNardo¹, Eytan M Stein², Stéphane de Botton³, Gail J Roboz⁴, Jessica K Altman⁵, Anthony Stein¹s, Gabriel N Mannis³, Daniel A Pollyea¹⁰, Will Donnellan¹¹, Amir T Fathi¹², Arnaud Pigneux¹³, Harry P Erba¹⁴, Gabrielle T Prince¹⁵, Anthony Stein¹⁵ Geoffrey L Uy¹⁷, James M Foran¹⁸, Elie Traer¹⁹, Robert K Stuart²⁰, Martha L Arellano²¹, Mikkael A Sekeres²², Christophe Willekens³, Stephanie M Kapsalis²³, Denice Hickman²³, Hua Yang²³, David Dai²³, Bin Fan²³, Meredith Goldwasser²³, Washington Colored Control of Co Hua Liu²³, Sam Agresta²³, Bin Wu²³, Eyal C Attar²³, Martin S Tallman², Richard M Stone²⁴, Hagop M Kantarjian¹

University of Texas MD Anderson Cancer Center, Houston, TX, USA; *UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; *University of Colorado School of Conter, Dallas, TX, USA; *UT Southwestern University, Chicago, IL., USA; *University Wexner Medical Center, Columbus, OH, USA; *University of Colorado School Medicine, Aurora, CO, USA; "Sarah Cannon Research Institute, Nashville, TN, USA; "Massachusetts General Hospital Cancer Center, Boston, MA, USA; "CHU Bordeaux, Bordea

BACKGROUND

- Somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in ~6–10% of patients with acute myeloid leukemia (AML).
- The mutant IDH1 (mIDH1) enzyme catalyzes the reduction of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate (2-HG),1 and the resulting 2-HG accumulation leads to epigenetic dysregulation and impaired cellular differentiation 2-
- Ivosidenib (AG-120) is a first-in-class, oral, potent, targeted, small-molecule inhibitor of the mIDH1 enzyme.5
- Ivosidenib is under evaluation in an ongoing phase 1 dose escalation and expansion study of mIDH1 advanced hematologic malignancies, including relapsed/refractory acute myeloid leukemia (R/Ř AML).
- On the basis of data from this study, ivosidenib received US FDA approval on July 20, 2018 for the treatment of adult patients with R/R AML with a susceptible IDH1 mutation, as detected by an FDA-approved test.
- The prognosis for patients with R/R AML is poor, with a median overall survival of ≤6 months. and there is no standard-of-care treatment.

OBJECTIVE

 To report updated efficacy, safety, mIDH1 variant allele frequency (VAF) and baseline co-mutation data from all patients with R/R AML receiving ivosidenib 500 mg once daily (QD) in the phase 1 study.

METHODS

- The ivosidenib phase 1, open-label, multicenter, dose escalation and expansion study includes the evaluation of safety, tolerability, maximum tolerated dose, pharmacokinetics and pharmacodynamics (including 2-HG levels), and clinical activity in patients with mIDH1 advanced hematologic malignancies (NCT02074839).6
- Single-agent ivosidenib is administered orally QD or twice daily (BID) in continuous 28-day cycles.
- Doses in the escalation phase were 100 mg BID and 300, 500, 800, and 1200 mg QD.
- 500 mg QD was selected for the expansion phase.
- The primary efficacy endpoint for R/R AML was the rate of complete remission plus complete remission with partial hematologic recovery (CR+CRh: Table 1)
- International working group (IWG) responses were reported by the investigator; CRh was derived by the sponsor.

Table 1. Definitions of CR and CRh

Response	Bone marrow blasts (%)	ANC/μL	Platelets/µL
CR (per modified IWG 2003 criteria)8	<5	>1000	>100,000
CRh	<5	>500	>50,000
CIVI	-5	>300	>30,000

- · Here we report data for all patients with R/R AML whose ivosidenib starting dose was 500 mg QD.
- · The data cutoff date for this analysis was November 10, 2017

RESULTS

- The baseline characteristics of 179 R/R AML patients who received ivosidenib 500 mg QD are shown in Table 2.
- 17 (9.5%) remained on treatment at data cutof
- 17 (9.5%) discontinued treatment to proceed to stem cell transplant.
- Median treatment duration was 3.9 months (range, 0.1–39.5).

- The majority of adverse events (AEs) were grade 1–2 (**Table 3**) and
- AEs of interest (Table 4) were managed using standard-of-care treatments and ivosidenib dose modifications, as required
- · Ivosidenib induced durable responses (Table 5, Figures 1 and 2) and provided additional clinical benefits (Figure 3, Table 6)
- Transfusion independence was observed across all response categories in patients who were dependent at baseline.
- Ivosidenib induced IDH1 mutation clearance (IDH1-MC) in bone marrow mononuclear cells (BMMCs) from patients with a best overall response of CR or CRh (Table 7), and reduced m/DH1 VAF in BMMCs and neutrophils from patients with a best overall response of CR or CRh
- 26% of patients with a best response of CR/CRh for whom molecular data were available had IDH1-MC in both BMMCs and neutrophils.
- Patients with IDH1-MC had improved durations of CR+CRh and overall survival versus patients with detectable mIDH1 (Figure 5).

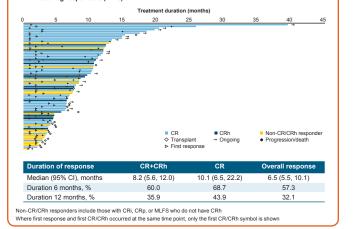
Table 2. Baseline characteristics

Characteristic	R/R AML 500 mg (n=179)
Women/men, n	89/90
Age, median (range), years Age category, n (%) <60 years 60 to <75 years ≥75 years	67.0 (18–87) 47 (26.3) 92 (51.4) 40 (22.3)
ECOG Performance Status at baseline, n (%) 0 1 2 3	36 (20.1) 99 (55.3) 42 (23.5) 2 (1.1)
<i>De novo</i> AML, n (%) Secondary AML, n (%)	120 (67.0) 59 (33.0)
No. of prior therapies, median (range)	2.0 (1-6)
Prior AML therapy outcomes*, n (%) Relapsed after transplant In 2nd or later relapse Refractory to initial induction/reinduction therapy Relapsed within 1 year of initial therapy In 1st relapse Other	43 (24.0) 26 (14.5) 106 (59.2) 17 (9.5) 15 (8.4) 5 (2.8)
Cytogenetic risk status by investigator, n (%) Intermediate Poor Unknown/missing	105 (58.7) 50 (27.9) 24 (13.4)
Most common baseline co-mutations ^b , % DNMT3A mRNA splicing gene ^c NPM1 RAS pathway ^d ASXL1 RUNX1 P53	34 31 25 24 19 18

Table 2 Most common AEs (220%) by preferred term, regardless of causality

R/R AML 500 mg (n=179)	Any grade,	Grade ≥3,	
	n (%)	n (%)	
Any AE	179 (100)	148 (82.7)	
Diarrhea	60 (33.5)	4 (2.2)	
Leukocytosis	56 (31.3)	14 (7.8)	
Nausea	56 (31.3)	1 (0.6)	
Febrile neutropenia	52 (29.1)	52 (29.1)	
Fatigue	51 (28.5)	3 (1.7)	
ECG QT prolonged	46 (25.7)	18 (10.1)	
Dyspnea	44 (24.6)	7 (3.9)	
Edema peripheral	43 (24.0)	0 (0.0)	
Pyrexia	41 (22.9)	2 (1.1)	
Anemia	40 (22.3)	36 (20.1)	
Cough	38 (21.2)	1 (0.6)	

Table 4. Investigator-reported AEs of interest by preferred term

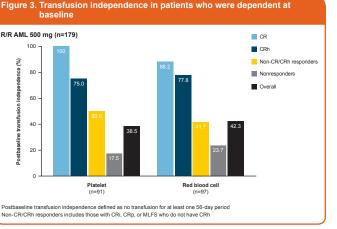

	n (%)	Details
Grade ≥3 leukocytosis ^a	14 (8)	Managed with hydroxyurea None were fatal
Grade ≥3 ECG QT prolongation	18 (10) •	Study drug was reduced in 2 patients and held in 13 patients (all grades) None were fatal QT-prolonging medications such as antifungals and fluoroquinolone anti-infectives were allowed on study with monitoring
IDH-DS (all grades)		Resolved in 17 patients, ongoing in 2 patients at data cutoff Grade ≥3 IDH-DS in 9 patients (5.0%) 7/19 patients with IDH-DS had co-occurring leukocytosis Study drug held in 6 patients (3.4%) No instances of IDH-DS led to dose reduction, permanent treatment discontinuation, or death Managed with corticosteroids and diuretics, and hydroxyurea if accompanied by leukocytosis Best response for the 19 patients with IDH-DS: 5 CR, 3 CRi/CRo. 2 MLFS. 8 SD. and 1 not evaluable

Grade 3: white blood cells >100,000/mm²; Grade 4: clinical manifestations of leukostasis, urgent intervention indicated RI = CR with incomplete hematologic recovery. CRp = CR with incomplete platelet recovery, DS = differentiation syndrome; ut ES = monophologic leukomia fine actors CR = cstble (liesea).

Table 5. Response rates

	R/R AML 500 mg (n=179)
CR+CRh rate, n (%) [95% CI] Time to CR/CRh, median (range), months Duration of CR/CRh, median [95% CI], months	57 (31.8) [25.1, 39.2] 2.0 (0.9–5.6) 8.2 [5.6, 12.0]
CR rate, n (%) [95% CI] Time to CR, median (range), months Duration of CR, median [95% CI], months	43 (24.0) [18.0, 31.0] 2.8 (0.9–8.3) 10.1 [6.5, 22.2]
CRh rate, n (%) Duration of CRh, median [95% CI], months	14 (7.8) 3.6 [1.0, 5.5]
Overall response rate, n (%) [95% CI] Time to first response, median (range), months Duration of response, median [95% CI], months	75 (41.9) [34.6, 49.5] 1.9 (0.8–4.7) 6.5 [5.5, 10.1]
Best response, n (%) CR CRi or CRp MLFS SD PD NA	43 (24.0) 21 (11.7) 11 (6.1) 68 (38.0) 15 (8.4) 21 (11.7)

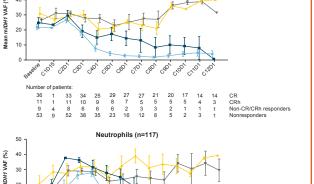
R/R AML 500 mg responders (n=75)

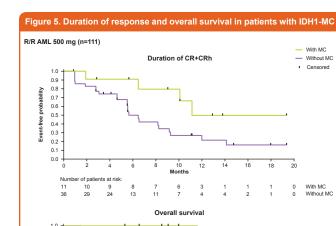


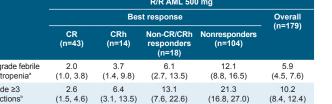
igure 2. Overall survival by best response R/R AML 500 mg (n=179) Non-CR/CRh re Overall Number of patients at risk: 57 57 57 56 50 43 32 25 16 15 11 7 4 4 4 3 2 2 1 1 CR+CRh 104 77 55 38 29 15 9 6 3 2 0 Overall survival, median (95% C CR+CRh 18.8 (14.2. NF) Non-CR/CRh responders 9.2 (6.7, 10.8) 4.7 (3.7, 5.7)

hose with best responses of SD. PD. or not evaluable NE = not estimable

15.3 (0.2-39.5)


Overall follow-up, median (range)


Table 6. Exposure-adjusted incidence of febrile neutropenia and grade ≥3


	R/R AML 500 mg				
	Best response				Overall
	CR (n=43)	CRh (n=14)	Non-CR/CRh responders (n=18)	Nonresponders (n=104)	(n=179)
All grade febrile neutropenia ^a	2.0 (1.0, 3.8)	3.7 (1.4, 9.8)	6.1 (2.7, 13.5)	12.1 (8.8, 16.5)	5.9 (4.5, 7.6)
Grade ≥3 infections ^b	2.6 (1.5, 4.6)	6.4 (3.1, 13.5)	13.1 (7.6, 22.6)	21.3 (16.8, 27.0)	10.2 (8.4, 12.4)

R/R AML 500 mg

gure 4. Longitudinal mean mIDH1 VAF by best overall response

w aplasia preferred term. Based on MedDRA V20.0 System Organ Class of infections

Table 7. IDH1 mutation clearance in BMMCs

Response	R/R AML 500 mg (n=111)			
	n	IDH1 mutation clearance, ^a n (%)	Detectable <i>IDH1</i> mutation, n (%)	
CR+CRh CR CRh	47 36 11	11 (23) 10 (28) 1 (9)	36 (77) 26 (72) 10 (91)	
Others Non-CR+CRh responders Nonresponders	64 9 55	0 0 0	64 (100) 9 (100) 55 (100)	
p-value ^b		<0.001		

CONCLUSIONS

- In this high-risk, molecularly defined mIDH1 R/R AML patient population, ivosidenib induced durable responses:
- CR+CRh rate 32%, median duration 8.2 months, median overall survival 18.8 months
- Overall response rate 42%, median duration 6.5 months.
- · Additional benefits:
- Transfusion independence across response categories
- Decreased frequency of febrile neutropenia and infections
- Ivosidenib induced IDH1-MC in BMMCs in 23% of patients with a best overall response of CR or CRh.
- · Ivosidenib was well tolerated
- AEs of interest were managed with standard-of-care treatments and ivosidenib dose modifications, as required.
- · Ongoing AML studies:
- Phase 1 ivosidenib or enasidenib + azacitidine (AZA)⁹
- AGILE: global, phase 3, first-line ivosidenib + AZA versus placebo + AZA¹⁰
- Phase 1 ivosidenib or enasidenib in combination with standard AML induction and consolidation therapy.11

References

Without MC

- 1. Dang L et al. Nature 2009;462:739-44.
- 2. Lu C et al. Nature 2012;483:474-8.
- Saha SK et al. Nature 2014;513:110-4.
- 4. Xu W et al. Cancer Cell 2011:19:17-30
- Popovici-Muller J et al. ACS Med Chem Lett 2018:9:300-5.
- DiNardo CD et al. N Engl J Med 2018:378:2386-98.
- Roboz GJ et al. J Clin Oncol 2014;32:1919-26.
- 8. Cheson B et al. J Clin Oncol 2013;21:4642-9 9. DiNardo CD et al. 2018 ASCO Annual Meeting: Oral presentation S1562.
- 10. Stein EM et al. 2018 ASCO Annual Meeting: Poster TPS7074.
- 11. Stein EM et al. 2017 ASH Annual Meeting: Oral presentation 726.

We would like to thank the patients who took part in this study, the principal investigators, their staff, and their institutions

Disclosures

This study was funded by Agios Pharmaceuticals, Inc. Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

