



# AGILE: A global, randomized, double-blind, phase 3 study of ivosidenib + azacitidine versus placebo + azacitidine in patients with newly diagnosed acute myeloid leukemia with an *IDH1* mutation

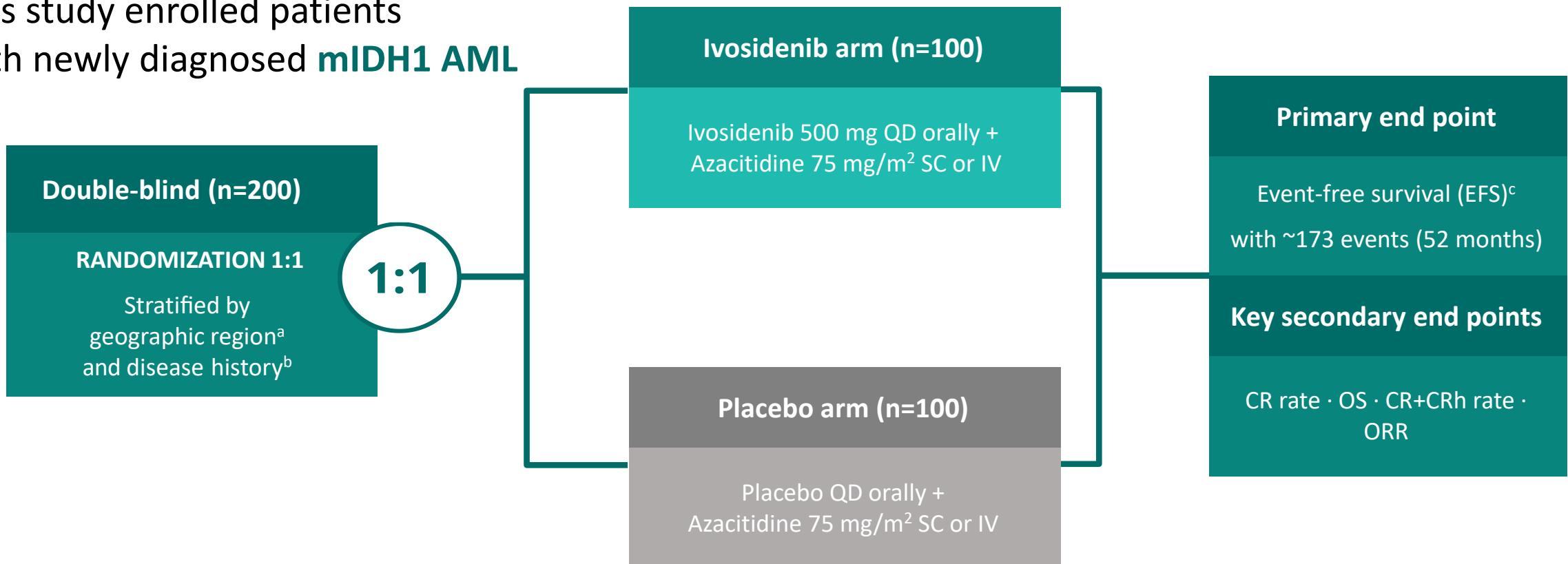
Pau Montesinos,<sup>1a</sup> Christian Recher,<sup>2a</sup> Susana Vives,<sup>3</sup> Ewa Zarzycka,<sup>4</sup> Jianxiang Wang,<sup>5</sup> Giambattista Bertani,<sup>6</sup> Michael Heuser,<sup>7</sup> Rodrigo T Calado,<sup>8</sup> Andre C Schuh,<sup>9</sup> Su-Peng Yeh,<sup>10</sup> Scott R Daigle,<sup>11</sup> Jianan Hui,<sup>11</sup> Vickie Zhang,<sup>11</sup> Shuchi S Pandya,<sup>11</sup> Diego A Gianolio,<sup>11</sup> Stephane de Botton,<sup>12b</sup> **Hartmut Döhner**<sup>13b</sup>

<sup>1</sup>Hospital Universitari i Politècnic La Fe, Valencia, Spain; <sup>2</sup>Institut Universitaire du Cancer de Toulouse Oncopole, CHU de Toulouse, Toulouse, France;

<sup>3</sup>Hospital Universitario Germans Trias i Pujol-ICO Badalona, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain;

<sup>4</sup>Klinika Hematologii i Transplantologii, Uniwersyteckie Centrum Kliniczne, Gdańsk, Poland; <sup>5</sup>Institute of Hematology & Hospital of Blood Disease – Peking Union Medical College, Tianjin, China; <sup>6</sup>ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; <sup>7</sup>Hannover Medical School, Hannover, Germany;

<sup>8</sup>Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil; <sup>9</sup>Princess Margaret Cancer Centre, Toronto, ON, Canada; <sup>10</sup>China Medical University, Taichung, Taiwan; <sup>11</sup>Servier Pharmaceuticals, Boston, MA, USA; <sup>12</sup>Institut Gustave Roussy, Villejuif, France; <sup>13</sup>Ulm University Hospital, Ulm, Germany


<sup>a</sup>Co-first authors; <sup>b</sup>Co-senior authors

Presented at the 3rd How to Diagnose and Treat Acute Leukaemias at the European School of Haematology (ESH)

March 10–13, 2022 (Virtual)

# AGILE: study design and end points

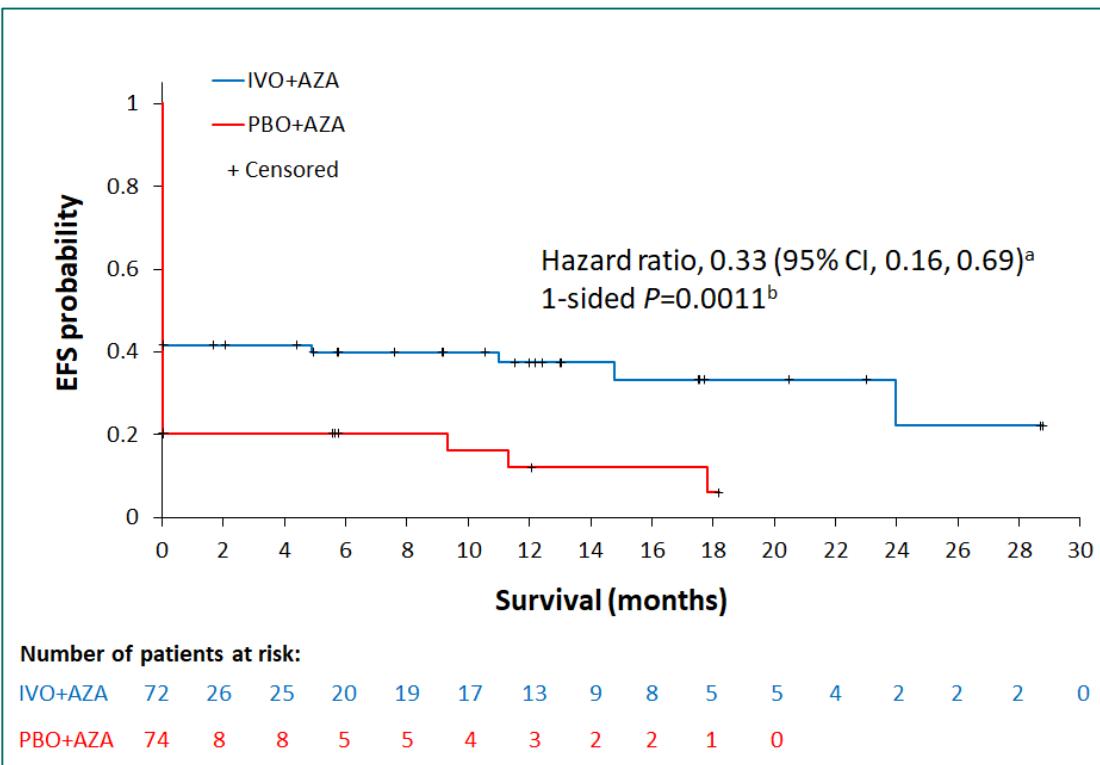
This study enrolled patients with newly diagnosed **mIDH1 AML**



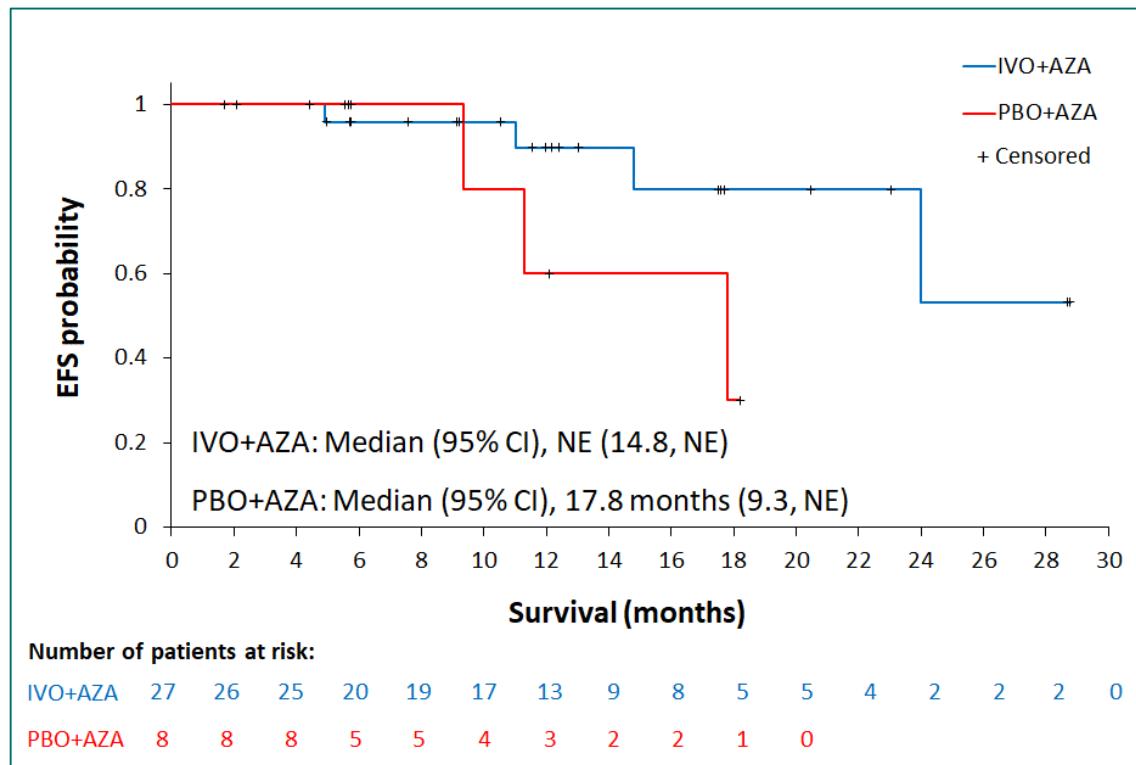
- As of the data cutoff date for this analysis (March 18, 2021), 146 patients have been randomized (IVO+AZA, n=72; PBO+AZA, n=74).
  - As of 12 May 2021, the IDMC recommended to halt enrollment based on a noted difference in clinical importance between the treatment groups, not related to safety.
    - A total of 148 patients were enrolled at 155 active sites in 20 countries.

<sup>a</sup>Geographic regions: US/Canada; Western Europe, Israel and Australia; Japan; and Rest of the World. <sup>b</sup>Disease history: de novo vs secondary AML

<sup>c</sup>EFS is defined as the time from randomization until treatment failure, relapse from remission, or death from any cause, whichever occurs first. Treatment failure is defined as failure to achieve CR by week 24. CR = complete remission; CRh = complete remission with partial hematologic recovery; IDMC = independent data monitoring committee; IV = intravenously; ORR = objective response rate; OS = overall survival; PBO = placebo; QD = once daily; SC = subcutaneously


# Baseline demographic and disease characteristics

| Characteristic                                          | IVO+AZA<br>(n=72)             | PBO+AZA<br>(n=74)             |
|---------------------------------------------------------|-------------------------------|-------------------------------|
| Median (range) age, years                               | 76 (58–84)                    | 75.5 (45–94)                  |
| Sex, n (%)                                              |                               |                               |
| Male/Female                                             | 42 (58.3)/30 (41.7)           | 38 (51.4)/36 (48.6)           |
| ECOG PS score, n (%)                                    |                               |                               |
| 0/1/2                                                   | 14 (19.4)/32 (44.4)/26 (36.1) | 10 (13.5)/40 (54.1)/24 (32.4) |
| Disease history (per investigator), n (%)               |                               |                               |
| De novo AML                                             | 54 (75.0)                     | 53 (71.6)                     |
| Secondary AML <sup>a</sup>                              | 18 (25.0)                     | 21 (28.4)                     |
| Median (range) m/DH1 VAF in BMA, % (range) <sup>b</sup> | 36.7 (3.1–50.5)               | 35.5 (3.0–48.6)               |
| Cytogenetic risk, n (%) <sup>c</sup>                    |                               |                               |
| Favorable/intermediate/poor                             | 3 (4.2); 48 (66.7); 16 (22.2) | 7 (9.5); 44 (59.5); 20 (27.0) |
| Median (range) bone marrow blasts, %                    | 54 (20–95)                    | 48.0 (17–100)                 |


<sup>a</sup>Secondary AML included patients with treatment-related AML, with history of MDS, or with history of MPN. <sup>b</sup>IVO+AZA, n=49; PBO+AZA, n=58; VAF was quantified by next-generation sequencing. <sup>c</sup>Cytogenetic risk status was reported as other or missing for 5 patients (6.9%) in the IVO+AZA arm and 3 patients (4.1%) in the PBO+AZA arm  
BMA = bone marrow aspirate; ECOG PS = Eastern Cooperative Oncology Group Performance Status; MDS = myelodysplastic syndrome; MPN = myeloproliferative neoplasms; VAF = variant allele frequency

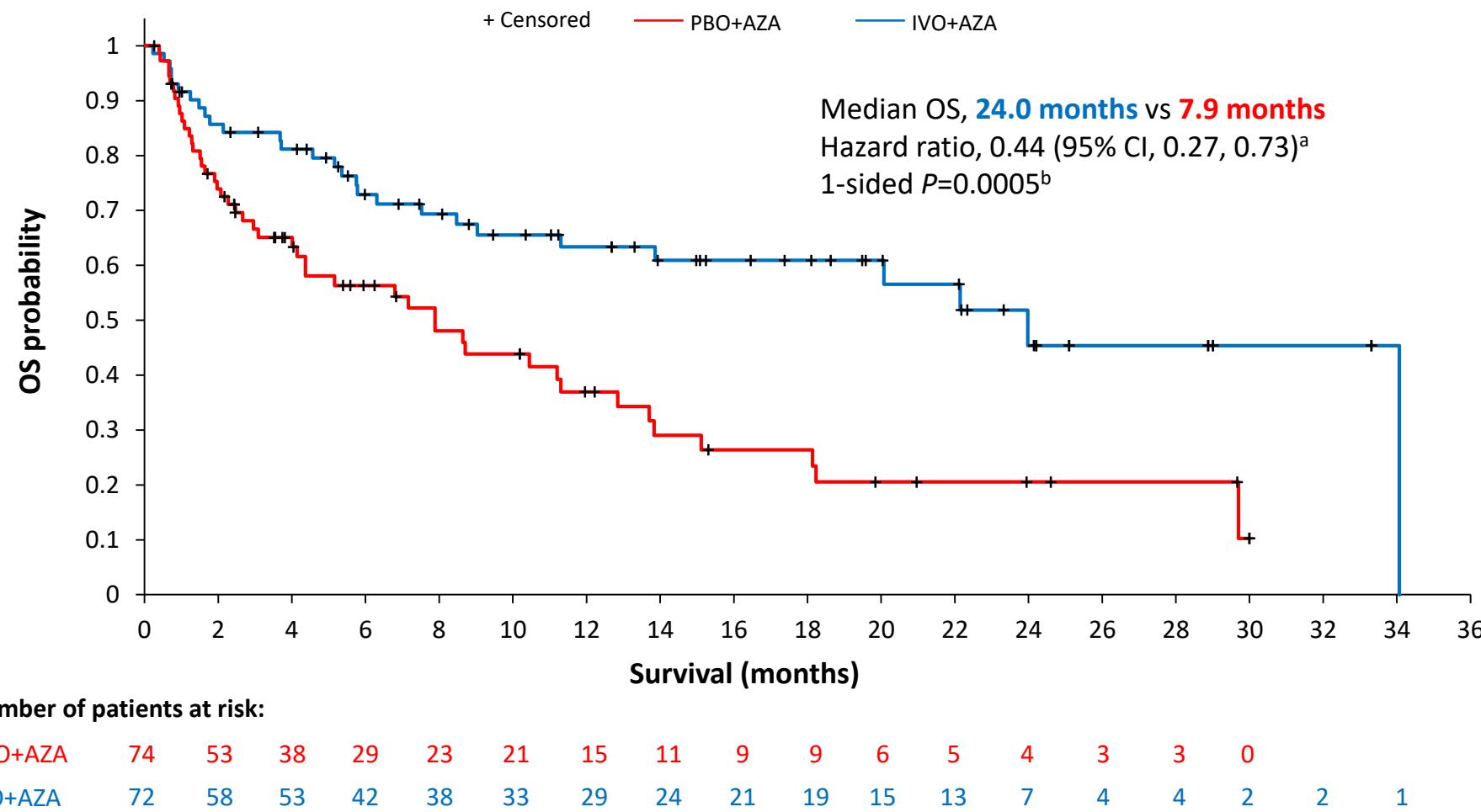
# IVO+AZA significantly improves EFS in mIDH1 AML

EFS in the intent-to-treat population



EFS among patients who achieved CR by 24 weeks




- Patients who did not achieve CR by week 24 were considered to have had an event at day 1 of randomization.
- EFS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline cytogenetic risk status, WHO classification of AML, baseline white blood cell count, baseline percentage of bone marrow blasts.

<sup>a</sup>Hazard ratio was estimated using a Cox's proportional hazards model stratified by the randomization stratification factors

<sup>b</sup>P value was calculated from the one-sided log-rank test stratified by the randomization stratification factors

NE = not estimable; WHO = World Health Organization

# IVO+AZA significantly improves OS in mIDH1 AML



- OS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline cytogenetic risk status, WHO classification of AML, baseline white blood cell count, baseline percentage of bone marrow blasts.

<sup>a</sup>Hazard ratio was estimated using a Cox's proportional hazards model stratified by the randomization stratification factors

<sup>b</sup>P value was calculated from the one-sided log-rank test stratified by the randomization stratification factors

# IVO+AZA improved clinical and hematologic response in *mlDH1* AML

| Response rates                                | IVO+AZA (n=72)         | PBO+AZA (n=74)                    |
|-----------------------------------------------|------------------------|-----------------------------------|
| CR rate, n (%) [95% CI]                       | 34 (47.2) [35.3, 59.3] | 11 (14.9) [7.7, 25.0]             |
| Odds ratio (95% CI); 1-sided <i>P</i> value   |                        | 4.8 (2.2, 10.5); <i>P</i> <0.0001 |
| Median duration of CR (95% CI), months        | NE (13.0, NE)          | 11.2 (3.2, NE)                    |
| Median time to CR (range), months             | 4.3 (1.7–9.2)          | 3.8 (1.9–8.5)                     |
| CR+CRh rate, n (%) [95% CI]                   | 38 (52.8) [40.7, 64.7] | 13 (17.6) [9.7, 28.2]             |
| Odds ratio (95% CI); 1-sided <i>P</i> value   |                        | 5.0 (2.3, 10.8); <i>P</i> <0.0001 |
| Median duration of CR+CRh (95% CI), months    | NE (13.0, NE)          | 9.2 (5.8, NE)                     |
| Median time to CR+CRh (range), months         | 4.0 (1.7–8.6)          | 3.9 (1.9–7.2)                     |
| ORR, n (%) [95% CI]                           | 45 (62.5) [50.3, 73.6] | 14 (18.9) [10.7, 29.7]            |
| Odds ratio (95% CI); 1-sided <i>P</i> value   |                        | 7.2 (3.3, 15.4); <i>P</i> <0.0001 |
| Median duration of response (95% CI), months  | 22.1 (13.0, NE)        | 9.2 (6.6, 14.1)                   |
| Median time to first response (range), months | 2.1 (1.7–7.5)          | 3.7 (1.9–9.4)                     |

<sup>a</sup>Assessed by BEAMing Digital PCR (limit of detection 0.02–0.04%) in patients with at least one on-treatment sample available. <sup>b</sup>*N* being the total number of patients with available biomarker samples in the corresponding category. <sup>c</sup>Total number of patients with available biomarker samples in the corresponding treatment group

BMMC = bone marrow mononuclear cell; PCR = polymerase chain reaction

# Treatment-emergent adverse events (TEAEs)

|                                                           | IVO+AZA (n=71) |                | PBO+AZA (n=73) |                |
|-----------------------------------------------------------|----------------|----------------|----------------|----------------|
|                                                           | Any grade      | Grade $\geq 3$ | Any grade      | Grade $\geq 3$ |
| Any TEAE, n (%)                                           | 70 (98.6)      | 66 (93.0)      | 73 (100)       | 69 (94.5)      |
| Any hematologic TEAEs, n (%)                              | 55 (77.5)      | 50 (70.4)      | 48 (65.8)      | 47 (64.4)      |
| Most common hematologic TEAEs (>20% <sup>a</sup> ), n (%) |                |                |                |                |
| Anemia                                                    | 22 (31.0)      | 18 (25.4)      | 21 (28.8)      | 19 (26.0)      |
| Febrile neutropenia                                       | 20 (28.2)      | 20 (28.2)      | 25 (34.2)      | 25 (34.2)      |
| Neutropenia                                               | 20 (28.2)      | 19 (26.8)      | 12 (16.4)      | 12 (16.4)      |
| Thrombocytopenia                                          | 20 (28.2)      | 17 (23.9)      | 15 (20.5)      | 15 (20.5)      |
| Most common TEAEs (>20% <sup>a</sup> ), n (%)             |                |                |                |                |
| Nausea                                                    | 30 (42.3)      | 2 (2.8)        | 28 (38.4)      | 3 (4.1)        |
| Vomiting                                                  | 29 (40.8)      | 0              | 19 (26.0)      | 1 (1.4)        |
| Diarrhea                                                  | 25 (35.2)      | 1 (1.4)        | 26 (35.6)      | 5 (6.8)        |
| Pyrexia                                                   | 24 (33.8)      | 1 (1.4)        | 29 (39.7)      | 2 (2.7)        |
| Constipation                                              | 19 (26.8)      | 0              | 38 (52.1)      | 1 (1.4)        |
| Pneumonia                                                 | 17 (23.9)      | 16 (22.5)      | 23 (31.5)      | 21 (28.8)      |
| Bleeding, n (%)                                           | 29 (40.8)      | 4 (5.6)        | 21 (28.8)      | 5 (6.8)        |
| Infections, n (%)                                         | 20 (28.2)      | 15 (21.1)      | 36 (49.3)      | 22 (30.1)      |

- TEAEs of special interest with IVO+AZA vs PBO+AZA included grade  $\geq 2$  differentiation syndrome (14.1% vs 8.2%) and grade  $\geq 3$  QT prolongation (9.9% vs 4.1%<sup>b</sup>).
- Infections were less common with IVO+AZA (28.2%) compared with PBO+AZA (49.3%).
- There were no deaths deemed related to treatment.

<sup>a</sup>>20% cutoff used for any-grade TEAEs based on IVO+AZA

<sup>b</sup>QT prolongation with PBO+AZA includes electrocardiogram QT prolonged (2.7%) and syncope (1.4%)

# Summary

- IVO+AZA significantly improved EFS, OS, and clinical response (CR, CR+CRh, ORR) compared with PBO+AZA in patients with newly diagnosed *mIDH1* AML ineligible for intensive induction chemotherapy.
- The safety profile of IVO+AZA was favorable and TEAEs were manageable, with fewer infections reported, relative to PBO+AZA.
- HRQoL was favored in the IVO+AZA arm compared with PBO+AZA.
- These data demonstrate the clinical benefit of IVO+AZA in this difficult-to-treat *mIDH1* AML population.

## Acknowledgments

We thank the participating patients and their families. We also thank Christina X Chamberlain, PhD, of Servier, for the HRQoL analysis.

## Disclosures

This study was funded by Agios Pharmaceuticals, Inc. Servier Pharmaceuticals LLC has completed the acquisition of Agios' oncology business.

Editorial assistance was provided by Vanessa Ducas, PhD, Excel Medical Affairs, Fairfield, CT, USA, and supported by Servier Pharmaceuticals LLC.